⚠️ Details are subject to change. See Canvas for due dates. Last Updated: Mon Apr 22 9:03:20 AM
Date | Topic | Read | Collaborate | Practice | Assess |
---|---|---|---|---|---|
Preparing yourself and your data for analysis | |||||
01/24 | Introduction to the class | Syllabus Welcome slides | QFT: Preparing data for analysis | HW 00: Getting Started | Quiz 00 - Ind |
Self regulated learning | Q&A Class Logistics | Quiz 00 - Grp | |||
Reproducible Workflows |
PMA6 Ch3 ASCN Ch 1 |
||||
01/26 | Review - Linear Regression |
PMA6 Ch 8, 10.3 ASCN Ch 7 |
What we know about LinReg | ||
Regression Model Building | |||||
01/29 | Review - Linear Regression | ASCN Ch 7 | QFT: Model Building & Variable Selection | HW 01: Regression Modeling | Quiz 01 - Ind |
01/31 | Stratification & Moderation | ASCN Ch 8 | Q&A Model Buliding | Quiz 01 - Grp | |
02/02 | Interaction terms |
PMA6 Ch 8.8 ASCN Ch 10.1 |
|||
02/05 | Model Building |
PMA6 Ch9 ASCN Ch 10 |
|||
Automatic Variable Selection |
PMA6 9.6-9.7 ASCN Ch 10.4 |
||||
Modeling Binary Outcomes | |||||
02/12 | Logistic Regression |
PMA6 Ch 12 ASCN Ch 11.1-11.3 |
QFT/LJ: Binary outcomes | HW 02: Logistic Regression & Classification | Quiz 02 - Ind |
02/16 | Classification and Prediciton |
PMA6 11.3-11.4 ASCN Ch 12 |
Q&A Modeling Binary Outcomes | Logistic Regression Worksheet (Google Drive) | Quiz 02 - Grp |
Missing Data: Much ado about nothing | |||||
02/28 | Identification and Impact | PMA6 10.2 ASCN Ch 18 | QFT/LJ: Missing Data | HW 03: Missing Data | Quiz 03 - Ind |
03/04 | Imputation | Q&A Missing Data | Watch the Seminar on Missing Data: https://media.csuchico.edu/media/0_tgnydpgf and write a LJ entry (see canvas) | Quiz 03 - Grp | |
Multivariate Analysis: More than one response variable | |||||
03/25 | Principal Component Analysis |
PMA6 Ch 14 ASCN Ch 14 |
QFT/LJ: Dimension Reduction | HW04: Dimension Reduction | Quiz 04 - Ind |
04/02 | Factor Analysis |
PMA6 Ch 15 ASCN Ch 15 |
Q&A Dimension Reduction | Quiz 04 - Grp | |
Correlated Outcomes: Borrowing information from your neighbors | |||||
04/10 | Micro and Macro level variables | PMA6 Ch 18.1-18.4 ASCN Ch 17 | QFT/LJ: Correlated Outcomes | HW05: Multilevel Models | Quiz 05 - Ind |
04/15 | Regression of clustered data | PMA6 Ch 18.5-18.7 | Q&A Correlated Data | Quiz 05 - Grp | |
Special Topics: Student led activities | |||||
04/24 | Topic 01: Power Analysis | ||||
04/29 | Topic 02: Inter rater reliability | ||||
05/01 | Topic 03: Longitudinal and Spatial Analysis | ||||
05/03 | Topic 04: Intro to Cluster analysis | ||||
05/06 | Topic 05: Clustering Algorithms (Part I) | ||||
05/08 | Topic 06: Clustering Algorithm: NMDS | ||||
05/10 | Topic 07: Intro to Deep Learning | ||||
05/15 | Topic 08: Non-random sampling. Process & Estimation |